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This paper presents the comparison of different 1-D nonlinear dynamic models of non-oriented soft magnetic steel sheets (SMSSs). 
The discussed models take into account dynamic effects on magnetization due to eddy currents and hysteresis inside such sheets and 
differ in the way the coupled Maxwell equations with hysteresis are solved. Finite-difference and finite-element approaches are used to 
solve the strongly coupled problem. In contrast to this, an alternative modelling approach is based on Ampere’s and Faraday’s laws, 
where a system of ordinary differential equations is obtained when using adequate discretization. The different modelling approaches 
are analysed and compared in terms of mathematical structure, implementation work, spatial discretization and accuracy.  
 

Index Terms— dynamic modeling, eddy currents, finite-differences method, finite-element method, magnetic hysteresis, power loss  
 

I. INTRODUCTION 

ON-ORIENTED soft magnetic materials are widely used as 
a basic constituent of rotating electrical machines and 

exhibit complex properties such as saturation and dynamic 
hysteresis. Modelling of iron losses and transients in laminated 
structure is of critical importance for designers of electrical 
machines and transformers. The behaviour of ferromagnetic 
cores that are operating under distorted flux waveforms is the 
result of several intertwined phenomena: eddy currents, skin 
effect, saturation and hysteresis. This interdependence cannot 
be solved without a strongly coupled model of diffusion 
equation. First numerical solutions to the penetration equation 
have been obtained using the finite-difference (FD) method 
using compact or non-compact stencils [1-3]. In contrast to 
this, the finite-element (FE) method allows to consider the 
distributed nature of the time derivative over some spatial 
domain [3, 4]. However, solving the fully coupled problem 
using FD- or FE-scheme considering rate-dependent or rate-
independent hysteresis requires tedious implementation work. 
Furthermore, its direct coupling to external circuits is an 
intricate task. Alternatively the magnetic field and eddy 
current distributions inside a lamination can be solved using 
the parametric magneto-dynamic model (PMD) [5, 6], where 
the diffusion phenomena are effectively solved based on a 
simple matrix differential equation.  

This paper presents a comparative analysis of the PMD 
model and the FE- and FD-solutions in terms of mathematical 
structure, implementation, computational performance, 
accuracy and spatial discretization. To couple the magnetic 
field and magnetic flux density an inverse static hysteresis 
model is used [7, 8].  

II. THEORETICAL BACKGROUND 

Measured quantities in Epstein frames are currents and 
fluxes related to the magnetic field at the surface of the 
lamination and the average magnetic flux density across the 
lamination thickness. Symmetries of the measurement tools 

and the geometry of the sample facilitate to work with a 1-D 
formulation of the eddy current problem (1). 
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Considering a lamination of thickness d with an upper 

surface normal vector n = (0, 0, 1), the domain of analysis is a 
line parallel to n, across half the thickness. A static hysteresis 
model yields the constitutive relation between B and H. 

A. Static Hysteresis Model 

The considered description is an inverse modified Jiles-
Atherton static, rate-independent hysteresis model. The model 
is formulated in terms of an ODE supplemented with a 
number of auxiliary non-linear relationships [7, 8].  

B. Finite-Differences Modelling Approach 

The simplest FD-scheme to solve (1) is a second-order 
scheme based on the central difference approximation [1, 2] 
linking the magnetic field and flux density of the internal 
nodes of the FD-grid along the line. Together with the required 
boundary conditions this leads to the FD approximation of the 
diffusion problem, which is compatible with the ODEs of an 
external electrical circuit. Voltage- or current-driven versions 
can be introduced using prescribed Dirichlet or Neumann 
boundary conditions [2].  

C. Finite-Element Modelling Approach 

Using the FE method (1) can be formulated in terms of the 
magnetic field intensity or in terms of the magnetic vector 
potential to cover different types of excitation (voltage- or 
current-driven) [4]. Resulting PDEs with appropriate boundary 
conditions can be solved by the Galerkin method and a time-
stepping scheme. The boundary value problem originating 
from the A-field formulation inherits one major difficulty, 
namely that the hysteresis is considered in terms of the 
magnetic reluctivity and hence in the stiffness matrix 
exacerbating the introduction of the differential reluctivity.  
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D. Parametric Magneto-Dynamic Model 

Based on average values of magnetic variables inside 
individual slices of the SMSS and Faraday’s law, induced 
eddy currents ies inside all the slices can be calculated, which 
directly affect the excitation of magnetic field inside the 
SMSS. Considering this fact by expressing the equilibriums of 
magneto-motive forces (mmfs) in all the slices of the SMSS 
using Ampere’s law, the eddy currents calculation can be 
eliminated [5, 6]. Finally, the PMD is expressed in form of a 
simple matrix differential equation (2) 
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In (4) Θ represents a vector of the mmfs generated by the 

applied current ip in the excitation winding,  H Φ  is a vector 

of average magnetic field strengths as hysteretic functions of 
the average magnetic fluxes in the slices and lm is magnetic 
path length. N is a vector with number of turns of the excita-
tion winding, Rm is a vector of non-linear reluctances due to 
the static hysteresis and Lm is the linear magnetic inductance 
matrix due to induced eddy currents inside each slice [5, 6]. 
The presented PMD can be both current and voltage driven, 
where the magnetic equation (2) can be coupled with an exter-
nal excitation circuit calculating induced voltage ui in the 
excitation winding by (3) 
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III. RESULTS 

Discussed models were implemented, evaluated and 
compared using the software package Matlab/Simulink. Due 
to spatial limitations only results for the PMD model are 
shown. Fig. 1 and Fig. 2 show the time dependence of 
magnetic flux densities Bs and magnetic field strengths Hs for 
a coarse (Ns = 3, Fig. 1) and fine discretization (Ns = 7, Fig. 2) 
for sinusoidal voltage excitation of 1000 Hz. Corresponding 
dynamic hysteresis loops along with measured and static 
hysteresis loops are presented in Fig. 3. 

 

 
Fig. 1. Calculated magnetic flux densities Bs and field strengths Hs in 
individual slices along with the average magnetic flux density Bm and surface 
magnetic field strengths H0 using Ns = 3 slices. 
 

 
Fig. 2. Calculated magnetic flux densities Bs and field strengths Hs in 
individual slices along with the average magnetic flux density Bm and surface 
magnetic field strengths H0 using Ns = 7 slices. 
 

 
Fig. 3. Dynamic hysteresis loops using different discretization of the SMSS 
(Ns = 3 and Ns = 7 slices) along with measured and static hysteresis loops for 
sinusoidal voltage excitation. 

IV. CONCLUSION 

This paper presents a profound insight in the various 
methods to solve the strongly coupled diffusion problem and 
gives comparisons to measured data. The full paper will 
present the details of the implementation and the 
comprehensive analysis of the different methods. The PMD 
model offers the sought for flexibility to include various 
hysteresis models and simplifies the intricate task coupling the 
lamination model to external circuits. 
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